Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers.

نویسندگان

  • Xiaoyan Zhang
  • Saifeng Zhang
  • Bohua Chen
  • Hao Wang
  • Kan Wu
  • Yang Chen
  • Jintai Fan
  • Shen Qi
  • Xiaoli Cui
  • Long Zhang
  • Jun Wang
چکیده

Hierarchical MoS2 thin films nanostructured with orthogonally oriented vertically and horizontally aligned layers were designed and excellent passive Q-switching behavior in a fiber laser was demonstrated. A special solvothermal system containing a small amount of water was applied to synthesize such hierarchical MoS2 nanofilms, in which the reaction rate is carefully controlled by the diffusion rate of the sulfur precursor. Wafer-scale MoS2 thin films with hierarchical structures are formed on various substrates. Moreover, the hierarchical MoS2 thin films consisting of both vertical and horizontal layers can be tuned to possess only horizontally aligned layers by controlling the solvothermal time. To show the potential application proof-of-concept, the nonlinear optical performance of the hierarchical MoS2 was investigated. Superior passive Q-switching behavior in a fiber laser with a minimum pulse width of 2.2 μs was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of MoS2 and MoSe2 films with vertically aligned layers.

Layered materials consist of molecular layers stacked together by weak interlayer interactions. They often crystallize to form atomically smooth thin films, nanotubes, and platelet or fullerene-like nanoparticles due to the anisotropic bonding. Structures that predominately expose edges of the layers exhibit high surface energy and are often considered unstable. In this communication, we presen...

متن کامل

Growth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method

Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Vertical heterostructure of two-dimensional MoS₂ and WSe₂ with vertically aligned layers.

Two-dimensional (2D) layered materials consist of covalently bonded 2D atomic layers stacked by van der Waals interactions. Such anisotropic bonding nature gives rise to the orientation-dependent functionalities of the 2D layered materials. Different from most studies of 2D materials with their atomic layers parallel to substrate, we have recently developed layer vertically aligned 2D material ...

متن کامل

MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces.

Two-dimensional (2D) layered materials exhibit high anisotropy in materials properties due to the large difference of intra- and interlayer bonding. This presents opportunities to engineer materials whose properties strongly depend on the orientation of the layers relative to the substrate. Here, using a similar growth process reported in our previous study of MoS2 and MoSe2 films whose layers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2016